Student Notebook
Finding Urban Nature

Use the scientific process to discover nature’s interconnections in the schoolyard habitat
Finding Urban Nature (FUN) is a hands-on, natural science discovery program that has reached more than 25,000 students in 26 Seattle Public Schools since 1989. Spanning eight lessons throughout the school year, small groups of 3rd and 4th graders, with the assistance of volunteer guides, examine their schoolyard habitats and discover the plants and animals that live there. Parents, Seattle Audubon members, senior citizens, university students, and other community members are among the hundreds of volunteer guides who share their love of nature and the environment with the children. The aim of FUN is to open the eyes of the participants to the fact that nature is all around us, even in an urban setting. FUN provides a means of bringing the excitement of environmental discovery into the classroom, while introducing students to the processes of scientific inquiry, observations, recording data, and making and testing hypotheses.

The FUN program is one of the longest-running and highly-valued education programs at Seattle Audubon.

This notebook was developed by Anita Lagerberg and Martha Nester. It has evolved with help from:

Terry Adams Courtenay Jackson Susanna Stodden
Christine Benita Lindsey Johnsons Jeannine Wallach
Hanae Bettencourt Janelle Lasher Jill Walters
Kintea Bryant Colene McKee Japhy Whalen
Sara Frame Christine Scheele Cheryl Wotus

For their generous contributions of time and money, we would like to thank:

The American Honda Foundation, Battelle Seattle Research Center, The Boeing Company, the Bullitt Foundation, Environmental Protection Agency, National Science Foundation, Puget Sound Consumer Co-op, The Salem Fund of the Rodman Foundation, Seattle Audubon members, Seattle University, Seattle Works, Stadium Cleaners, Washington Foundation for the Environment, United Way of King County, and The Weyerhaeuser Foundation.
FINDING URBAN NATURE

FIELD NOTES FOR LEAF HUNT

DATE ______________ LOCATION __________________________________ TIME__________

WEATHER: □ Rainy □ Cloudy or Partly Cloudy □ Sunny

PREDICTED NUMBER OF PLANT SPECIES IN STUDY AREA ___________ (estimate at the beginning)

ACTUAL NUMBER OF PLANT SPECIES IN STUDY AREA _______________ (count at the end)

VOCABULARY

Habitat: A place where an animal or plant lives and can find food, shelter, oxygen, water, and space to survive.

Species – a group of individuals that share a unique set of characteristics

Characteristics: Traits that describe living and non-living things (e.g., color, shape, texture).

Leaf Form: The overall shape of the leaf (oval, heart, or triangle, etc.).

Leaf Margin: The outer edge of the leaf (smooth, toothed, etc.).

Leaf Form: the overall shape of the leaf

□ Oval □ Heart □ Round □ Triangle □ Narrow

□ Lobed □ Scaly □ Needles □ Compound □ Other?

Leaf Margin: the outer edge of the leaf

□ Smooth □ Toothed □ Other?

Leaf Texture: how the leaf feels in your hands

□ Smooth □ Rough □ Scaly □ Thick □ Thin □ Fuzzy □ Other?
Leaf Form Bar Graph

<table>
<thead>
<tr>
<th># of Leaves Collected</th>
<th>Oval</th>
<th>Heart</th>
<th>Round</th>
<th>Triangle</th>
<th>Narrow</th>
<th>Lobed</th>
<th>Scaly</th>
<th>Needles</th>
<th>Compound</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Leaf Form Type
Leaf Margin Bar Graph

<table>
<thead>
<tr>
<th># of Leaves Collected</th>
<th>Smooth</th>
<th>Toothed</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leaf Margin Type

Leaf Hunt, Continued
Use the bar graphs you created to answer the following questions:

1. The most common leaf form collected is: _________________________________
 a. Our group collected ____________ leaves with this leaf form.

2. The least common leaf form collected is: _________________________________
 a. Our group collected ____________ leaves with this leaf form.

3. The most common leaf margin collected is: _______________________________
 a. Our group collected ____________ leaves with this leaf margin.

4. The least common leaf margin collected is: _______________________________
 a. Our group collected ____________ leaves with this leaf margin.

5. How do animals depend on plants in a habitat?
 __
 __
 __

6. Why is it important to have different types of plants in your schoolyard habitat?
 __
 __
 __

Challenge Question: What would happen if all of the grass in this habitat was replaced with many different species of plants?
 __
 __
 __

Leaf Rubbing Page
FINDING URBAN NATURE

FIELD NOTES FOR WEB IT

DATE ______________ LOCATION ____________________________ TIME ______________

WEATHER □ Rainy □ Cloudy or Partly Cloudy □ Sunny

Vocabulary

- **arachnid** – a group of animals that include spiders, mites, and ticks
- **adaptation** – an inherited trait, like a special behavior or physical characteristic, that helps a species survive in its habitat
- **wave** - a disturbance that travels through space and matter transferring energy from one place to another
- **predator** – an animal that hunts other animals for food
- **prey** – an animal that is hunted for food

QUESTIONS FOR THE DAY

1. What did you observe the spider do when a leaf or pine needle was placed in its web? (skip this question if you did not find a spider in a web)

__

__

__

2. Why are spiders important to the habitat around your school?

__

__

__
3. How do spiders find prey or foreign objects in their web?

a. **Challenge Question:** Are spiders born with this ability? What is the word that describes an ability or characteristic that an animal is born with?

4. Which web type is most common in your study site?

a. **Challenge Question:** Why do webs come in different shapes and sizes?

5. Are spiders using human-made places to build their webs? If yes, what are they using?
FINDING URBAN NATURE
FIELD NOTES FOR ROOTS & SHOOTS

DATE __________________ LOCATION _____________________________ TIME __________________

WEATHER □ Rainy □ Cloudy or Partly Cloudy □ Sunny

VOCABULARY

- *competition* – the fight for resources in order to survive
- *shoot* – the above-ground part of a plant (stems, branches, leaves, flowers, and fruit)
- *fibrous root* – the below-ground part of a plant with a large mass of string like roots
- *taproot* – the below-ground part of a plant with a long main root (which may have smaller roots growing from it)
- *invasive species* - A species that is non-native, able to succeed in many habitats, grows quickly, and spreads to the point of disrupting an ecosystem.

QUESTIONS FOR THE DAY

1. What resources does a plant need to survive?

 __

 a. What happens if a plant does not get all of these resources?
 __
2. Why are roots and shoots important to a plant?
Roots:___
__
__

Shoots:___
__

3. What makes invasive species such great competitors?
__
__
__

4. How do animals, including humans, use plant roots and shoots?
__
__
__

5. What was one interesting thing you observed today?
__

Use the space below to draw some interesting things that you observed today.
FIELD NOTES FOR Neighborhood birds

VOCABULARY

Diversity: The differences between living things in a habitat.

Circumference: the measurement around something that is round, like your head or an orange. In this lesson, you will measure the distance around the middle of the bird.

Species – a group of individuals that share a unique set of characteristics

♀: The symbol for female

♂: The symbol for male

Use your Bird Skin Observations to answer these questions:

1. Which bird has the longer body length? ________________________________

2. Which bird has the larger body circumference? ________________________________

3. Looking at this bird's beak, what type of food do you think it eats? Why do you think this?
 __
 __
 __

4. Looking at the bird’s feet, where do you think this bird might spend much of its time?
 - ☐ In the water
 - ☐ Perching on branches
 - ☐ Seizing prey
 - ☐ Climbing up and down tree trunks

5. Describe the characteristics of one of your birds that help it survive in its habitat.
 __
 __
 __
 __

6. **Challenge Question:** What can you do to help birds survive in your neighborhood?
 __
 __
 __
 __
BIRD SKIN OBSERVATION DATA SHEET

DATE

TEAM

MEMBERS

<table>
<thead>
<tr>
<th>NAME OF BIRD</th>
<th>1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE OR FEMALE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIRD BODY LENGTH</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure the bird from tip of beak to tip of tail, down its back.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIRD CIRCUMFERENCE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure the bird around the widest part of its body.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHAPE OF BEAK</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw a picture of the shape of its beak.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHAPE OF FEET</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw a picture of the shape of its feet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLOR AND MARKINGS OF BIRD</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beak</td>
<td>Food</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Activity</td>
<td>Foot Shape</td>
<td>Adaptation and Lifestyle</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Swimming</td>
<td></td>
<td>Webbed feet help birds, like ducks, paddle through water efficiently. Gulls have similar feet to prevent them from sinking into mud and wet sand as they walk about.</td>
</tr>
<tr>
<td>Swimming and Walking</td>
<td></td>
<td>These feet belong to semi-aquatic birds that spend some time swimming and some time walking around on land. The lobes help the birds swim efficiently, and walk well on land. Coots and grebes have lobed feet.</td>
</tr>
<tr>
<td>Perching on branches</td>
<td></td>
<td>Perching birds like wrens, warblers, and thrushes have flexible toes. Three point forward and one points backward. When a perching bird sits on a branch, a tendon on the back of the ankle automatically locks the toes around the branch; this prevents the bird from falling out of the tree while sleeping.</td>
</tr>
<tr>
<td>Seizing Prey</td>
<td></td>
<td>Birds of prey, like falcons, hawks, and vultures, have claw-like feet called talons from grabbing prey.</td>
</tr>
<tr>
<td>Climbing</td>
<td></td>
<td>Woodpeckers have two toes point forwards and two pointing backwards. This lets them climb up, down, and sideways on tree trunks. Notice the sharp nails for holding onto wood.</td>
</tr>
</tbody>
</table>
FINDING URBAN NATURE

FIELD NOTES FOR Bird Nests

DATE ______________________
LOCATION _____________________________
TIME _____________________________

WEATHER
- [] Rainy
- [] Cloudy or Partly Cloudy
- [] Sunny

GOAL: Build a model of an ideal nest for your schoolyard habitat.

1. PLAN

Criteria: Details that will make your project successful
My bird nest will have these criteria:

- [] ______________________________________
- [] ______________________________________
- [] ______________________________________
- [] ______________________________________

Constraints: Limits that you will need to work around
List the limits you think you will have in this habitat:

- ______________________________________
- ______________________________________
- ______________________________________
- ______________________________________

2. BUILD

Prepare the nest frame, collect nesting materials, weave and fill the nest.

Circle the materials you used for your nest:

- twigs
- green grass
- dried grass
- pine needles
- green leaves
- dried leaves
- hair/feathers
- mud
- bark
- moss/lichen
- Other: ________________________________

I lined the inside of my nest with: ________________________________

3. TEST

My nest passed the following tests:

- [] Egg test (Will your nest hold a rock, or does the rock fall through a hole?)
- [] Windstorm test (Does it stay together when lightly shaken or bumped?)
- [] Camouflage test (Does it blend in with the habitat while still accessible for birds?)

4. RETRY

What do you need to change about your nest to make it better fit the criteria in your plan?
FINDING URBAN NATURE
Bird Nests - Continued

VOCABULARY

engineer – (noun) Someone who designs and builds structures to help solve problems.
 – (verb) To plan and build a solution to a problem.
criteria – The characteristics and requirements an engineer would like to include in a design for a successful final product.
constraints – Limits to a possible engineering solution or problem, like available resources and materials.
camouflage – Characteristics that allow an animal or object to blend into its environment

QUESTIONS FOR THE DAY

1. Why do birds build nests?

2. How are birds adapted to build nests? How do they know what to do?

 Challenge Question: What happens if a nest that a bird built fails (for example, it falls apart in bad weather)?

3. How did you choose the place to put your nest?

4. Is your schoolyard habitat a good place for birds to build nests? Why or Why not?

 Challenge Question: What happens if the materials that a bird usually uses to build a nest go away (for example, if a forest gets logged, if there is a fire or flood, etc.)
DATE ______________________ LOCATION ________________________________ TIME__________________

WEATHER
- ☐ Rainy
- ☐ Cloudy or Partly Cloudy
- ☐ Sunny

Use the tally chart below to mark the types of litter critters you found in the natural litter:

<table>
<thead>
<tr>
<th>Litter Critter</th>
<th>Tally</th>
<th>Decomposer?</th>
<th>Predator?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centipede</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millipede</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earwig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthworm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pill Bug/Roly Poly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sow Bug/Potato Bug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spider</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worms (small, not earthworm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graph the data from the chart above in the bar graph below:

<table>
<thead>
<tr>
<th>Number of Litter Critters Found</th>
<th>Ant</th>
<th>Beetle</th>
<th>Centipede</th>
<th>Millipede</th>
<th>Earwig</th>
<th>Earthworm</th>
<th>Mite</th>
<th>Pill Bug</th>
<th>Slug</th>
<th>Sow Bug</th>
<th>Snail</th>
<th>Spider</th>
<th>Worms (Other)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

VOCABULARY

- **decomposer** – an animal that eats dead and decaying material and returns the nutrients back to the environment
- **natural litter** – materials left by plants and animals, such as dead leaves, sticks and branches, scat, fur and feathers, etc.
- **predator** – an animal that hunts other animals for food
- **prey** – an animal that is hunted for food
- **entomologist** – a scientist who studies insects
QUESTIONS FOR THE DAY

1. How many of the critters that you found are decomposers? How many are predators?

__

__

What are the critters doing in the litter?

__

2. Describe the habitat where you found your litter critters.

__

__

__

3. What is the difference between natural litter and litter left behind by humans?

__

__

__

Challenge Question: What would happen if humans removed all of the natural litter from the schoolyard habitat?

__

__

Would birds be affected? How about other animals?

__

__
DATE ______________________ LOCATION ______________________________ TIME____________________

WEATHER □ Rainy □ Cloudy or Partly Cloudy □ Sunny

Habitat: Check the words that best describe your quadrat or sample square.
 ____ Bare ground ____ Garden bed Other__________
 ____ Grassy/Weedy ____ Shrub area
 ____ Next to sidewalk/building ____ Tree area

Environmental Factors: things that affect a habitat: Check all that describe the area inside your sample square.
1. Ground cover in your quadrat or sample square
 ____ Lots of grass/weeds ____ Just a little grass/weeds ____ No grass, just soil
 ____ Wood chips ____ Leaf litter
 Other____________________

2. Weather Conditions
 ____ Sunny: sample area is → __ in the sun OR ___not in the sun
 ____ Cloudy
 ____ Rainy
 ____ Air Cold OR ____Air Warm

3. Soil Conditions
 ____ Packed, hard to push in stakes ____ Loose, easy to push in stakes
 Soil is: ____ dry ____ damp

 ____ Soil has an earthy smell ____ Soil does not have an earthy smell
 ____ Soil dark in color ____ Soil light in color
 ____ Water soaked in slowly ____ Water soaked in quickly

I predict we will or will not find a lot of earthworms here because
Worm Worlds - Continued

Worm Count

<table>
<thead>
<tr>
<th>Worms</th>
<th>Tally Marks</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of juvenile worms found in your group’s quadrat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of adult worms found in your group’s quadrat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of worms found at your group’s quadrat

Did you see any other animals (besides worms) in or around your quadrat?

- **YES**
- **NO**

If yes, what animals did you see?

<table>
<thead>
<tr>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
FINDING URBAN NATURE
Worm Worlds Data Sheet, Week 2

DATE ________________________ LOCATION ______________________________ TIME______________________

WEATHER

☐ Rainy
☐ Cloudy or Partly Cloudy
☐ Sunny

Habitat: Check the words that best describe your quadrat or sample square.

_____ Bare ground
_____ Garden bed
Other__________

_____ Grassy/Weedy
_____ Shrub area

_____ Next to sidewalk/building
_____ Tree area

Environmental Factors: things that affect a habitat: Check all that describe the area inside your sample square.

1. **Ground cover** in your quadrat or sample square

 ___ Lots of grass/weeds
 ___ Just a little grass/weeds
 ___ No grass, just soil
 ___ Wood chips
 ___ Leaf litter
 Other_________________

2. **Weather Conditions**

 ___ Sunny: sample area is → ___ in the sun OR ___not in the sun
 ___ Cloudy
 ___ Rainy
 ___ Air Cold OR ___Air Warm

3. **Soil Conditions**

 ___ Packed, hard to push in stakes
 ___ Loose, easy to push in stakes

 Soil is: ___ dry
 ___ damp

 ___ Soil has an earthy smell
 ___ Soil does not have an earthy smell
 ___ Soil dark in color
 ___ Soil light in color
 ___ Water soaked in slowly
 ___ Water soaked in quickly

I predict we will or will not find a lot of earthworms here because
Worm Worlds – Continued

Worm Count

<table>
<thead>
<tr>
<th>Worms</th>
<th>Tally Marks</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of juvenile worms found in your group’s quadrat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of adult worms found in your group’s quadrat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of worms found at your group’s quadrat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did you see any other animals (besides worms) in or around your quadrat?

YES NO

If yes, what animals did you see?

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

NOTES:
FINDING URBAN NATURE
Conclusions for Worm Worlds

VOCABULARY

- **environmental factor** – conditions that have an effect on a habitat, e.g. the amount of moisture in the soil, full-sun vs. shade, presence of vegetation, etc.
- **clitellum** – the band around an earthworm containing its reproductive organs
- **juvenile** – immature; not able to reproduce
- **adult** – mature; able to reproduce
- **oligochaetologist** - scientist who studies terrestrial and aquatic annelids (worms)

Enter your data here to help you finish your conclusion.

<table>
<thead>
<tr>
<th>Worm Counts</th>
<th>Week 1:</th>
<th>Week 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of earthworms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of adults</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of juveniles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Factors</th>
<th>Week 1:</th>
<th>Week 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The site with the most worms was _______________________. Here we found _____ worms.

2. The site with the least worms was _______________________. It only had _____ worms.

3. I predicted we would find (circle one) **A LOT OF WORMS** or **NOT AS MANY WORMS** during Week 2, compared to Week 1. These data **SUPPORT** or **DO NOT SUPPORT** our prediction.

4. We believe more earthworms were found in Week _______ because the soil was **HARD** or **SOFT**, absorbed the slurry **QUICKLY** or **SLOWLY** and the air temperature was **COOLER** or **WARMER** than Week _______.

23
If we were to do this investigation again, we would change

Write more below if these sentence starters do not work with your data.